The dead ringer/retained transcriptional regulatory gene is required for positioning of the longitudinal glia in the Drosophila embryonic CNS.

نویسندگان

  • Tetyana Shandala
  • Kazunaga Takizawa
  • Robert Saint
چکیده

The Drosophila dead ringer (dri, also known as retained, retn) gene encodes a nuclear protein with a conserved DNA-binding domain termed the ARID (AT-rich interaction domain). We show here that dri is expressed in a subset of longitudinal glia in the Drosophila embryonic central nervous system and that dri forms part of the transcriptional regulatory cascade required for normal development of these cells. Analysis of mutant embryos revealed a role for dri in formation of the normal embryonic CNS. Longitudinal glia arise normally in dri mutant embryos, but they fail to migrate to their final destinations. Disruption of the spatial organization of the dri-expressing longitudinal glia accounts for the mild defects in axon fasciculation observed in the mutant embryos. Consistent with the late phenotypes observed, expression of the glial cells missing (gcm) and reversed polarity (repo) genes was found to be normal in dri mutant embryos. However, from stage 15 of embryogenesis, expression of locomotion defects (loco) and prospero (pros) was found to be missing in a subset of LG. This suggests that loco and pros are targets of DRI transcriptional activation in some LG. We conclude that dri is an important regulator of the late development of longitudinal glia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glial and neuronal functions of the Drosophila homolog of the human SWI/SNF gene ATR-X (DATR-X) and the jing zinc-finger gene specify the lateral positioning of longitudinal glia and axons.

Neuronal-glial communication is essential for constructing the orthogonal axon scaffold in the developing Drosophila central nervous system (CNS). Longitudinal glia (LG) guide extending commissural and longitudinal axons while pioneer and commissural neurons maintain glial survival and positioning. However, the transcriptional regulatory mechanisms controlling these processes are not known. Pre...

متن کامل

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

Potential roles of 5´ UTR and 3´ UTR regions in post-trans-criptional regulation of mouse Oct4 gene in BMSC and P19 cells

Objective(s):OCT4 is a transcription factor required for pluripotency during early embryogenesis and the maintenance of identity of embryonic stem cells and pluripotent cells. Therefore, the effective expression regulation of this gene is highly critical. UTR regions are of great significance to gene regulation. In this study, we aimed to investigate the potential regulatory role played by 5´UT...

متن کامل

Drosophila retained/dead ringer is necessary for neuronal pathfinding, female receptivity and repression of fruitless independent male courtship behaviors.

Mutations in the Drosophila retained/dead ringer (retn) gene lead to female behavioral defects and alter a limited set of neurons in the CNS. retn is implicated as a major repressor of male courtship behavior in the absence of the fruitless (fru) male protein. retn females show fru-independent male-like courtship of males and females, and are highly resistant to courtship by males. Males mutant...

متن کامل

Nuclear Architecture and Epigenetics of Lineage Choice

Differentiation is an epigenetic process which is installed by changes of transcriptional programs over successive cellular divisions. A number of studies have reported the effects of biochemical modifications of chromatin (DNA and chromatin proteins) on the regulation of transcription. Although, these studies are able to explain how transcription of a given gene is regulated (toward activation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 130 8  شماره 

صفحات  -

تاریخ انتشار 2003